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gage derivative or long-term strongly path-
dependent exotic option.

However, we don’t know the other players’
strategies. The usual game theory approach is to
search for the strategy that gives the maximum
chance of winning, assuming all other players
know your strategy and act in the worst possible
way from your point of view. This strategy has 
the maximum (over the set of your possible
strategies) minimum (over the set of opponents’
possible responses) probability of winning and
is called “minimax.” It may not be a good 
strategy, in the sense of winning frequently
against real opponents.

In Monopoly, the minimax strategy has a very
low guaranteed chance of winning. The reason is
that if all other players act to minimize your
chance of winning, there is very little you can do
except hope for extraordinary luck. It should be
possible to get minimax style strategies by put-
ting restrictions on the strategies of opponents,
but to my knowledge it has never been done.

Rather than a game theory approach, I am
taking a financial approach to the game, solving
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Last issue, we went through a fair bit of 
analysis to propose the Monopoly property

pricing formula 
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where �i is the expected rent collected per oppo-
nents’ roll of the dice from property i, βi is the
expected rate of return on housing investment
per opponents’ roll of the dice for property i, n is
the number of players in the game,  � is the
expected net payment from the Bank per roll of
the dice and β is the geometric mean of the  βis
for all players.

The games people play
Before applying this model to game play I want to
take a step back. If the goal were to determine the
optimal strategy for Monopoly, to solve the game,
we would have to take a different approach. If we
knew the playing strategies of the other players,
the problem would be straightforward, but com-
putationally intensive. We could simulate every
possible Monopoly game and at every decision
node take the path that gives the highest proba-
bility of winning. With a few computational
tricks that is feasible. Since typical Monopoly
games involve a few hundred dice rolls with an
average of perhaps a hundred decisions per roll, a
Monopoly game is about as complex as a mort-

it as if it were a real world financial
problem. My solution is not perfect,
but it can be derived with a relative-
ly small amount of work. Unlike a
typical minimax strategy, it does not
depend crucially on tiny details of
the game, it does not have to be
recomputed from scratch for every
minor rule change. If there were an
elimination tournament of computer
programs to see which played the best
Monopoly game, contestants would be
well advised to take a minimax
approach to development. But my
approach is much more practical for
human Monopoly play. It gives general

insight into the game, even if it doesn’t always
recommend the optimal decision. Moreover, it’s
easy to improve for people who want to beat
other people who have read this article.

Garbage in, diamonds out
My goal is to illustrate the power of the financial
toolkit, not solve the game of Monopoly. So rather
than taking a rigorous approach, I started by
asserting that valuation is the key to the game.
Then I made a series of false assumptions so I
could get a closed-form expression for the value,
something similar to the Capital Asset Pricing
Model or the Gordon Model.

There are obvious objections to this approach,
in Monopoly and real world finance. Some stu-
dents cannot get over the fact that the assump-
tions are false. Others point out that we’re mov-
ing backward—we started with one thing we
don’t know (the value of a property) and wrote
down an expression for it that requires two
things we don’t know (the rate of return for the
property and for the game as a whole), which are
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unobservable to boot. Still other students are
unhappy because we haven’t defined value clear-
ly—are we talking about exchange value for a
trade or contribution to probability of winning or
cash value for a purchase or something else?
These things are not the same either theoretically
or quantitatively.

Nonetheless, we have done something impor-
tant. We have provided a foundation to answer
questions that are otherwise unanswerable.
Suppose the first player in a Monopoly game rolls
a 6, lands on Oriental Avenue and declines to buy
it. The property goes up for auction. How much
should you be willing to bid? Or, late in the game,
there is only one more house available to buy.
How much should you bid for it? These are the
kinds of questions that casual Monopoly players
cannot begin to answer. Our financial model is
not valuable because it gives accurate answers to
these questions, they don’t come up enough in
game play to make a difference and reasonable
arbitrary answers are probably almost as good as
the model. Instead the model is valuable because
it gives rational answers to these questions.

Monopoly as a Markov process
Our first task is to improve our formula by revisit-
ing some of the simplifying assumptions. We
started by saying all squares are visited with the
same frequency. This is not the case and it affects
the definition of rent roll (rather than dividing
the rent by 40 we should multiply by the frequen-
cy with which the property is visited) and the
value of Φ.

To compute the actual frequencies we num-
ber the squares from 0 (Go) to 39 (Boardwalk).
Next we define a transition matrix such that the
number in row i and column j is the probability
that one roll of the dice will take a player’s token
that starts on square i to square j. The eigenvector
of this transition matrix, with entries scaled to
add up to 1, will be the long-run frequency distri-
bution of visiting squares (if that’s not clear, it
isn’t essential to understand it for this article, but
I recommend you learn a little linear algebra, it’s
often handy). We can compute the eigenvector
either with a mathematics package, or by repeat-
ed matrix multiplication in Excel (start with a

vector of all 0.025 and keep multiplying it by the
transition matrix until it stops changing, it 
doesn’t take long).

There’s one detail that will make life easier.
Square 10, jail, can be visited in two states, “In
Jail” and “Just Visiting” with different rules apply-
ing to the next dice roll. Square 30, Go to Jail, is
never a starting or ending state (if you land on it
at the end of one roll, you go to square 10) so we
don’t need it in our transition matrix. If we make
square 30 the jail instead of square 10, so 10
means “Just Visiting” jail and 30 means “In Jail,”
every row in the transition matrix corresponds to
exactly one state.

We populate this matrix with dice probabili-
ties. For example, there is one chance in 18 that a
player will roll a three, so the entry in the first
row, fourth column is 1/18. This same number
will be in the second row, fifth column; and the
third row sixth column and so on (wrapping
around at the end, so it will be in the 37th row,
first column and so on).

The trouble is three squares labeled “Chance”
and three more labeled “Community Chest.”
Landing on these squares requires the player to
draw a card, which can send the token to another
square. We could try to adjust the transition
matrix directly, but it’s easier to compute a Dice
Matrix as in the previous paragraph and a Card
Matrix. The product of Dice times Card (in that
order) gives us the Transition Matrix. The Card
Matrix will be the Identity matrix except for the
six rows 2, 7, 17, 22, 33 and 36 which correspond
to Chance and Community Chest squares.

For example, square 2 is Community Chest.
Fourteen of the 16 cards do not move the token so
the (2,2) matrix entry is 14/16. One card sends the
token to Go (square 0), another to card sends the
token to Jail (“In Jail,” so square 30). Therefore (2,0)
and (2,30) are both 1/16 and all other Card Matrix
entries in row 2 are zero. One important detail:
some Chance cards instruct the player to
“Advance token to nearest . . .” The rules say to
move the token forward to the first qualifying
square, not to move around to board to the quali-
fying square nearest the starting point. For exam-
ple, if you are on square 7 (Chance) and draw
“Advance token to nearest railroad” you go to
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square 15 (Pennsylvania Railroad) rather than
square 5 (Reading Railroad).

Another problem is the rule that players roll
again if they get doubles, but three doubles in a
row ends the turn and sends them to jail. We are
going to compute all probabilities per roll rather
than per turn so a player can start from any
square in one of three states: first roll in the turn,
roll after one double and roll after two doubles
(there is no roll after three doubles because the
turn ends). This innocent-looking little rule
forces us to use nine times as many entries in our
transition matrix. Rows and columns 0 to 39 rep-
resent starting off a new turn, 40 to 79 represent
squares 0 to 39 after one double, 80 to 119 repre-
sent squares 0 to 39 after two doubles.

We’re going to need two 40x40 Dice Matrices,
one for doubles and one for nondoubles. There
are six possible doubles (2, 4, 6, 8, 10 and 12), each
with probability 1/36. Without doubles the possi-
ble rolls are 3, 4, 10 and 11 with probability 2/36
each; 5, 6, 8 and 9 with probability 4/36 each; and
7 with probability 6/36.

Now we can put together our Transition
Matrix. We take the Nondoubles Dice Matrix
times the Card Matrix and put that in the
Northwest sector. We take the Doubles Dice
Matrix times the Card Matrix and put it in the 40
columns to the right (that is the middle 40
columns in the top 40 rows). The remaining 40
columns of the top 40 rows are zeros.

We repeat the process for the next set of 40
rows, except that the Doubles Dice Matrix times



ally involve passing Go but there are a few excep-
tions. First, you have to look at each of the nine
submatrices individually, for example, row 37
(starting from Park Place on the first roll), column
45 (ending at Reading Railroad after rolling dou-
bles) does pass Go, although the final column is
larger than the row. The entry is below the diago-
nal in the submatrix, however. Also transitions to
Jail never pass Go, by rule. Backward moves from
the “Go Back Three Spaces” Chance card are also
never passes, these are easy to spot in the matrix.
Finally, a fraction of the moves from rows 35-39 to
row 5 (or a multiple of 40 increment) involve the
one case of passing Go twice on a roll (if you land
on Chance and draw “Take a Ride on the
Reading,” you collect $200).

Throwing all this in, with a few minor adjust-
ments, gives a value for Φ of $23.62, much lower
than the $30.40 we computed assuming equal
frequencies. The biggest difference is the reduced
frequency of passing Go due to time spent in Jail.
Unfortunately, � is no longer a constant. We
must subtract $0.29 for each house on the board
and $0.96 for each hotel, divided by the number
of players in the game. This accounts for one
Chance and one Community Chest that require
payments per building. These cards are irrele-
vant early in the game, but often decisive in late
games (good players remember where they are in
the stack, by the time they become important
their exact positions are usually known). When
the game gets down to two players, if it is fully-
developed (all 32 houses and 12 hotels are on the

board), � goes down to $13.17. A smaller
adjustment to � could be made for the
Income Tax square, but it is quantitatively
insignificant to valuation.

Simulating beta
Now we can turn our attention to the βis,
which we are going to estimate by simula-
tion. That is, we’re going to guess values for
the βis and simulate Monopoly games in
which players make decisions based on the
valuations. If our valuations are consistent,
the total valuation of all players should
grow at the game rate of interest on average
and individual players’ probability of win-
ning should always increase as the valua-

The Monopoly rules are not clear about how
this works, so I’m going to use the tournament
interpretation. Yes, there are Monopoly tourna-
ments. The other common source of fully-speci-
fied rules is the set used in Hasbro’s official
Monopoly computer game, these differ slightly
from the tournament rules.

In tournaments, the jailed player rolls the
dice when it is her turn. If she gets doubles, she
gets out of jail, moves the number of squares on
the dice and ends her turn (i.e. she does not roll
again for doubles as she normally would). On the
first and second turn in jail, if she does not get
doubles, she stays in jail. On the third turn, if she
does not get doubles she pays $50 to the Bank and
moves the indicated number of squares.

So for square 30 we are going to interpret the
three states as first turn in jail (row 30), second
turn in jail (row 70) and third turn in jail (row
110). For rows 30 and 70, we use the Doubles Dice
Matrix probabilities to set the chances of going to
squares 12, 14, 16, 18, 20 and 22, with 5/6 chance
of going from row 30 to row 70 (staying in jail but
moving from first to second turn) or 70 to 110
(moving from second to third turn in jail). For
row 110 we use the sum of the Doubles and
Nondoubles Matrix probabilities to set the
chances of going to rows 12, 13, 14, 15, 16, 17, 18,
19, 20, 21 and 22 (we always go to the first set of
columns, even if we roll doubles).

Passing Go and not passing Go
Transitions that end up below the diagonal gener-

the Card Matrix goes
in the last set of 40 columns, rather than the mid-
dle. For the last set of 40 rows we again put the
Nondoubles Dice Matrix times the Card Matrix in
the first 40 columns but we don’t use the Doubles
Dice Matrix. Instead we add 1/16 to every number
in column 30, from row 80 to 119.

One more complication and we’re done. We
have to define what happens to players starting
“In Jail,” square 30 in our model. Players have the
option of paying $50 to the Bank to get out of jail,
in which case we could eliminate row 30 
altogether. Players sent to Jail would just convert
automatically to “Just Visiting” and go to square
10. This typically happens early in the game when
players want to get out to buy available properties
and collect money from the Bank for passing Go.
Later in the game, there are few or no available
properties and the rents extracted by other play-
ers more than offset the income from the Bank.
Since this phase is the important one for valua-
tion, we are going to assume players stay in jail as
long as possible.
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LONG-RUN CELL FREQUENCIES IN MONOPOLY IF PLAYERS 
STAY IN JAIL AS LONG AS POSSIBLE (2.5% IS AVERAGE)
# Square Freq # Square Freq # Square Freq # Square Freq

0 Go 2.92% 10 Visiting Jail 2.14% 20 Free Parking 2.82% 30 In Jail 9.39%

1 Mediterranean 2.01% 11 St. Charles 2.56% 21 Kentucky 2.61% 31 Pacific 2.52%

2 Community Chest 1.78% 12 Electric Company 2.62% 22 Chance 1.04% 32 North Carolina 2.48%

3 Baltic 2.04% 13 States 2.18% 23 Indiana 2.57% 33 Community Chest 2.23%

4 Income Tax 2.20% 14 Virginia 2.43% 24 Illinois 3.00% 34 Pennsylvania 2.36%

5 Reading Railroad 2.80% 15 Pennsylvania Railroad 2.64% 25 B&O Railroad 2.89% 35 Shortline Railroad 2.29%

6 Oriental 2.13% 16 St. James 2.68% 26 Atlantic 2.54% 36 Chance 0.82%

7 Chance 0.82% 17 Community Chest 2.30% 27 Ventnor 2.52% 37 Park Place 2.06%

8 Vermont 2.19% 18 Tennessee 2.82% 28 Water Works 2.65% 38 LuxuryTax 2.06%

9 Connecticut 2.17% 19 New York 2.81% 29 Marvin Gardens 2.44% 39 Boardwalk 2.49%
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tion of their portfolio increases relative to the
total valuation. We adjust our guess for the βis to
make these things true, and rerun the simula-
tion. After many iterations we hope to converge
on a consistent set of βis. It’s always possible that
we have consistent but incorrect βis, which cause
simulated players to play stupidly and justify the
wrong values. It’s also possible that our model is
too simple to capture much of the variation in
probability of winning. So this approach is not
rigorous. This is similar to Richard Roll’s famous
criticism of the Capital Asset Pricing Model. We
will address this possibility by running our final
model against a number of simulated computer
players that use entirely different playing algo-
rithms. If our valuations win consistently against
other strategies, they’re good enough for the pur-
pose. If not, we have to go back and try another
model or set of parameters.

In the first cut, we assumed that each monop-
oly could be improved at a constant linear rate. In
reality, there are 10 or 15 discrete jumps per
monopoly, and they are highly non-linear. We
could increase the number of parameters to try
to get a more accurate price. I prefer to do the best
one-parameter job I can and see if it’s good
enough. If you want to beat someone who has
read this article, you might consider developing a
two-parameter pricing model and picking off the
one-parameter errors. Or you could go all the way
to an exact 15 parameter model. But each param-
eter adds considerably to the fitting time. I use
only 8 (one per monopoly) parameters while an
exact model requires 110.

We’re also going to reduce the time by simu-
lating only partial games. Black and Scholes
taught us value propagates backward, so we start
at the end of the game. All Monopoly games come
down to two players, generally owning all the
properties between them. I simulated a large
number of games by distributing properties and
money between two players and playing out to
see who won. I concentrated on initial allocations
that were close to even. If the valuations are off
for situations in which one player has a high
probability of beating the other, it won’t make
much difference. But errors in close situations
are harmful.

I needed an assumption for building and
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mortgage strategy. If you build a house on a
monopoly you increase the rent your opponent
pays for landing there, so it’s good to do. But if
you are forced to later sell that house, usually to
pay rent to your opponent, you only get half your
money back. So it makes sense to invest your cash
aggressively, but keep enough liquidity that you
don’t lose too much on sell-backs. A similar deci-
sion is when to mortgage or unmortgage proper-
ty. If you mortgage, the Bank lends you half the
official purchase price of the property, but you
cannot collect rent from your opponent on the
property. This foregone rent is the interest on the
loan. There is also a transaction cost, the Bank
demands 10% of the loan amount as a fee when
the loan is repaid.

After each dice roll, each simulated player
considered each legal decision, and simulated
each one forward three full turns, assuming no
other building, unmortgaging or unforced sell-
ing or mortgaging. The player took whatever deci-
sion resulted in the highest average value at the
end of the turns. If our valuations were perfect,
this step would be unnecessary, whatever action
maximized instantaneous valuation would be
the optimal decision. But investigating forward
corrects many flaws in valuation and means sim-
ulated players may make sound decisions even
when our valuation parameters are just guesses.

I fit βis for the eight monopolies that gave the
most accurate predictions of which sets of proper-
ty and cash would win against other sets. This is
relatively easy for two players because there is no
trading and you do not need to use an overall
interest rate, β , you can compute values using
only the βis of the two players.

Monopoly yield curve dynamics
Once I had the eight βis, I moved to a simulation
of a three-player game. The payoff function was
no longer win/lose but the total value of the port-
folio of cash and properties when one player went
bankrupt. For this, I needed to consider trades. It
would be very complex to worry about trades
while still fitting βis, so I wanted to use the same
ones I fit for the endgame. But these did not give
reasonable valuations in the three-person game.

This is not surprising. The argument used for
the valuation formula is a long-term equilibrium

that ignored all transient factors. But transients
can be very important. For example, the probabil-
ity is 8.31 per cent that an opponent will land on
the St. James+Tennessee+New York color group
on a random roll. But the specific probability 
for a given roll can be 0 per cent to 42 per cent.
Obviously this is a significant factor in determin-
ing whether to invest in houses on this monopoly
on a given turn.

I solved this by introducing a yield curve. At
every turn in the game there is an interest rate to
apply to expected gains and losses on the next
dice roll, a different interest rate for the dice roll
after that, and so on until three full rounds of
turns have passed and the long-term interest rate
applies to all future cash flows. I fit the distribu-
tion of these rates the same way I fit the βis in the
endgame. Short-term interest rates are highly
volatile, changing both with token positions on
the board and as players approach bankruptcy. A
player near bankruptcy makes interest rates very
high, rates fall sharply after the bankruptcy.
Long-term interest rates change slowly.

Now I could incorporate trades into the simu-
lation. After each roll of the dice, each property is
evaluated by each player. Whichever player gives
it the highest value buys it from the owner for the
average of his value and the owner’s value. This
does not result in much trading, because it is very
expensive to trade developed properties (all hous-
es and hotels must first be sold back to the Bank
at half price). Generally, once someone started
selling properties, she usually lost. However the
process is still very important, because it deter-
mines who ends up with what at the beginning
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because they depend, sometimes crucially, on all
the details of the game state.

There are three situations in which the origi-
nal closed-form valuation formula can be applied
directly. First is before any development has taken
place so the transient effects are minor. People
often shorten the Monopoly game by distributing
the properties among the players instead of cash.
The starting values in the table above are appro-
priate for that purpose. If you distribute the prop-
erties and use cash to make everyone up to the
same value, the game is fair. Don’t use too much
cash or you force down the interest rate and
change the values.

The second situation is late game values.
Suppose you see a game in progress with a lot of
houses and hotels showing, and no player in
immediate danger of bankruptcy. If you have no
information about the positions of the tokens 
on the board, the values in the end game column
should give accurate predictions of who is likely
to win.

Finally, we can ask what is the expected maxi-
mum value of this monopoly over the course of a
random game (minimum values are quite small
and not very meaningful). This reveals the impor-
tant midgame role of the first two monopolies
and Park Place+Boardwalk.

Has all this work created an algorithm that
can beat a good human player? I don’t know, the
answer awaits empirical test. But that’s not the
point of the exercise. If this model doesn’t work,
we can always go back and add more parameters
or tinker with the formulae.

The key is that we have developed what
appears to be a reasonable model for the game
and solved it (albeit with numerical algorithms
rather than simple formulae). We have injected
rationality into the play. We can test assertions
about strategy. Unless our model is way off, we
understand the game better.

The same thing is true of the basic models of
quantitative finance. Although they are not pre-
cise enough to give useful prices, they point the
way toward rational solutions. Practical finance
involves a lot of ad hoc pricing assumptions and
analytic shortcuts. But we can make experiment
with confidence because there is a sound theory
underlying everything.

of the two person
game. In casual
play, losing play-
ers often go
down in flames,
resulting in a
windfall for the
player (or the
Bank some-
times) who
pushes the
bankrupt over
the edge.

I repeated
this process

for four players
(the number I assumed started the game). This is
the ideal number for Monopoly, more players
increase the amount of luck involved, put too
much cash in the game and make trading diffi-
cult.

This still did not get me back to the beginning
of the game, because I started the four-player sim-
ulation assuming all properties were owned. For
the final simulation step, I put all players at Go
with $1,500 in cash and no properties. Whenever
player A landed on a property, each simulated
player in the game computed its value from his
perspective. If A had the highest valuation, and it
was higher than the purchase price, she bought
it. If B had the highest valuation, and it was high-
er than the purchase price, A bought it from the
Bank and immediately sold it to B for the average

of their valuations. If the highest value was less
than the purchase price, that player bought the
property from the Bank at that price. The effect of
these rules was usually that the player with the
most cash bought the first property available in
each color group (or railroads or utilities), and
that same person bought all subsequent proper-
ties in that group. Again, the payoff was not win-
ning or losing, but portfolio valuation after the
last property is purchased. For this stage of the
game, I assumed no building or mortgaging and
did not consider trades because there are too
many possibilities before properties are formed
into monopolies.

And the answer is …
Finally, I took these results and tested them
against other strategies. I programmed a number
of reasonable seeming strategies, and found that
mine regularly beat them. I tried perturbing the
valuation parameters and running complete
games to see if I could develop an improved
model. This resulted in some adjustments to 
my parameters.

At the conclusion of this process, which took
about a day of effort spread out over several
months (plus about a dozen overnight runs on
my computer), I had βi estimates for each color
group and a model of interest rate yield curve 
and evolution (not a model that can be easily
written down, however). Although the pricing
model is a simple closed form, the actual valua-
tions require numerical solution on a computer
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MONOPOLY VALUATIONS IN SOME SPECIFIC SITUATIONS
Properties Start (1.6% Interest) End (6% interest) Maximum 

βi �i Value �i Value Value

■ Mediterranean + Baltic 3.33% $0.24 $435 $14.20 $235 $1,002

■ Oriental + Vermont + Connecticut 7.65% $0.87 $510 $36.81 $610 $1,263

■ St. Charles + States + Virginia 4.36% $1.53 $529 $57.34 $950 $1,164

■ St. James + Tennessee + New York 11.89% $2.44 $618 $80.35 $1,332 $1,592

■ Kentucky + Indiana + Illinois 2.89% $3.06 $601 $87.36 $1,448 $1,575

■ Atlantic + Ventnor + Marvin Gardens 3.41% $3.40 $632 $87.45 $1,450 $1,619

■ Pacific + North Carolina + Pennsylvania 0.77% $3.92 $530 $96.78 $1,604 $1,662

■ Park Place + Boardwalk 6.44% $3.93 $694 $80.65 $1,337 $2,606

■ All four Railroads 0.00% $23.04 $1,429 $23.04 $382 $1,429

■ Both Utilities 0.00% $3.69 $229 $3.69 $61 $229


